

MOSFET - Power, Single N-Channel, STD Gate, SO8-FL

40 V, 0.7 m Ω , 323 A

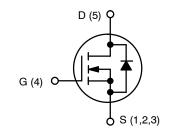
NVMFWS0D7N04XM

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Small Footprint (5 x 6 mm) with Compact Design
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

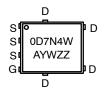
- Motor Drive
- Battery Protection
- Synchronous Rectification


MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter		Symbol	Value	Unit
Drain-to-Source Voltage		V _{DSS}	40	V
Gate-to-Source Voltage		V _{GS}	±20	V
Continuous Drain Current	T _C = 25°C	I _D	323	Α
	T _C = 100°C	1	229	
Power Dissipation	T _C = 25°C	P _D	134	W
Continuous Drain Current	T _A = 25°C	I _{DA}	9.18	Α
	T _A = 100°C		6.49	
Pulsed Drain Current	T _C = 25°C,	I _{DM}	900	Α
Pulsed Source Current (Body Diode)	t _p = 10 μs	I _{SM}	900	Α
Operating Junction and Stora Range	age Temperature	T _J , T _{STG}	–55 to 175	°C
Source Current (Body Diode))	I _S	202	Α
Single Pulse Avalanche Ene	rgy (I _{PK} = 21 A)	E _{AS}	987	mJ
Lead Temperature for Solder (1/8" from case for 10 s)	ring Purposes	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
40 V	0.7 m Ω	323 A


N-CHANNEL MOSFET

DFNW5 (SO-8FL) CASE 507BA

MARKING DIAGRAM

A = Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (Note 2)	$R_{\theta JC}$	1.11	°C/W
Thermal Resistance, Junction-to-Ambient (Notes 1, 2)	$R_{\theta JA}$	39.3	

^{1.} Surface-mounted on FR4 board using 650 mm² pad, 2 oz Cu pad.

ELECTRICAL CHARACTERISTICS (T_{.I} = 25°C unless otherwise specified)

Parameter	Symbol	Test Cond	ition	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				I	I	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D =	= 250 μA	40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$\Delta V_{(BR)DSS}/ \Delta T_J$	I _D = 250 μA, Refere	nced to 25°C		14.9		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 40 V, T _c	_J = 25°C			1	μΑ
		V _{DS} = 40 V, T _J	= 125°C			40	
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = 20 V, V _I	_{DS} = 0 V			100	nA
ON CHARACTERISTICS							
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _E	₎ = 50 A		0.59	0.7	mΩ
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 180 μΑ	2.5	3.0	3.5	V
Gate Threshold Voltage Temperature Coefficient	$\Delta V_{GS(TH)}/ \Delta T_J$	$V_{GS} = V_{DS}, I_{D}$	= 180 μΑ		-7.2		mV/°C
Forward Trans-conductance	9FS	V _{DS} = 5 V, I _D	= 50 A		244		S
CHARGES, CAPACITANCES & GATE RE	SISTANCE						
Input Capacitance	C _{ISS}	V _{GS} = 0 V, V _{DS} = 25	5 V, f = 1 MHz		4595		pF
Output Capacitance	C _{OSS}				2980		
Reverse Transfer Capacitance	C _{RSS}				41.8		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DD} = 3	2 V; I _D = 50 A		71.6		nC
Threshold Gate Charge	Q _{G(TH)}				13.5		
Gate-to-Source Charge	Q_{GS}				20.6		
Gate-to-Drain Charge	Q_{GD}				13		
Gate Resistance	R_{G}	f = 1 MH	łz		0.69		Ω
SWITCHING CHARACTERISTICS							
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 0/10 \text{ V}, \text{ V}_{I}$			7.33		ns
Rise Time	t _r	$I_D = 50 \text{ A}, R_G$	$G = 0 \Omega$		5.39		
Turn-Off Delay Time	t _{d(OFF)}				11.1		
Fall Time	t _f				4.48		
SOURCE TO DRAIN DIODE CHARACTER	RISTICS						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.81	1.2	V
		I _S = 50 A	T _J = 125°C		0.66		
Reverse Recovery Time	t _{RR}	V _{DD} = 32 V, I _F			94.4		ns
Charge Time	ta	dl/dt = 100	A/μs		55.6		1
Discharge Time	t _b				38.8		1
Reverse Recovery Charge	Q _{RR}				269		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{2.} The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

TYPICAL CHARACTERISTICS

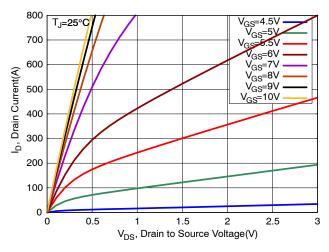
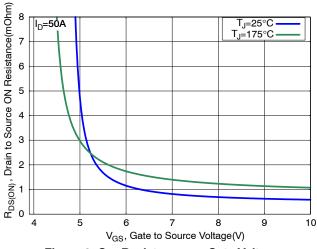



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

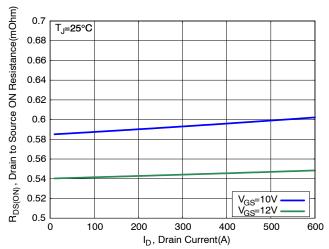
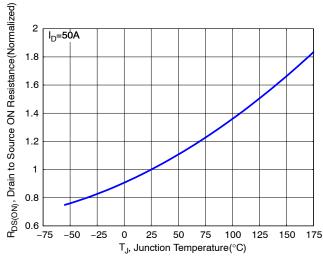



Figure 3. On-Resistance vs. Gate Voltage

Figure 4. On-Resistance vs. Drain Current

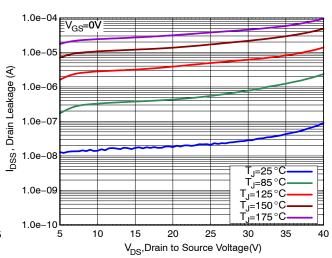


Figure 5. Normalized ON Resistance vs. Junction Temperature

Figure 6. Drain Leakage vs. Drain-to-Source Voltage

TYPICAL CHARACTERISTICS

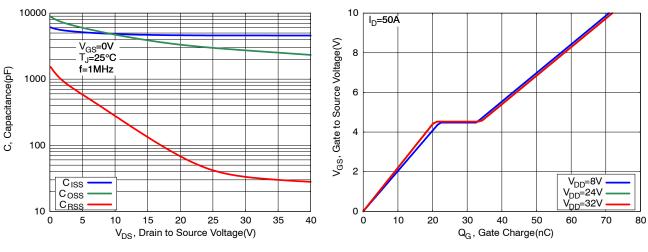


Figure 7. Capacitance Characteristics

Figure 8. Gate Charge Characteristics

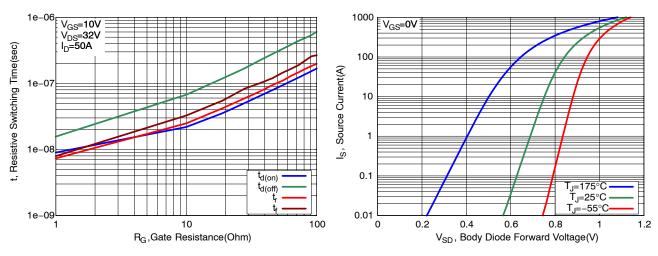


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

T_C=25°C T_J=175°C

1000

100

10

0.1

0.1

l_D, Drain Current (A)

Single Pulse

100 T_J=25°C T_J=100°C T_J=100°C 100°C 100°C

Figure 10. Diode Forward Characteristics

Figure 11. Maximum Rated Forward Biased Safe Operating Area

V_{DS},Drain to Source Voltage(V)

Ron limit
Package limit
BV limit
PulseDuration=0.5ms
pulseDuration=1ms
pulseDuration=10ms

10

t_{AV},TIME IN AVALANCHE(s)

Figure 12. Ipeak vs. Time in Avalanche

TYPICAL CHARACTERISTICS

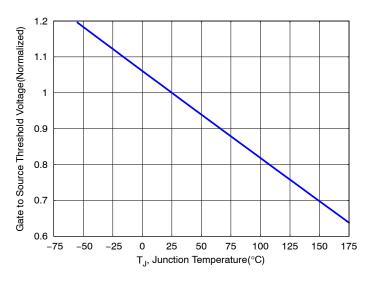


Figure 13. Gate Threshold Voltage vs. Junction Temperature

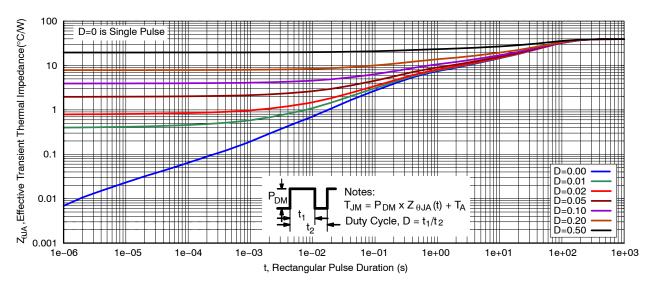


Figure 14. Thermal Response

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMFWS0D7N04XMT1G	0D7N4W	DFNW5 (Pb-Free)	1500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

IDENTIFIER

// 0.10 C

○ 0.10 C

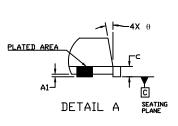
CASE 507BA **ISSUE A**

MILLIMETERS

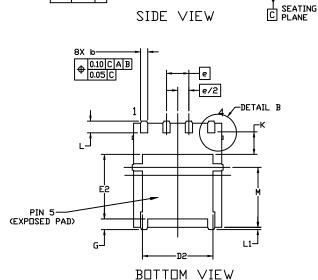
TES:

DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.

CONTROLLING DIMENSION: MILLIMETERS

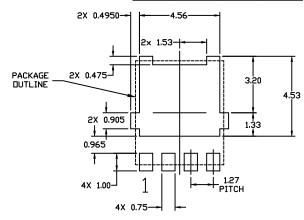

DIMENSIONS DI AND EI DO NOT INCLUDE MOLD FLASH,

PROTRUSIONS, OR GATE BURRS.


THIS PACKAGE CONTAINS WETTABLE FLANK DESIGN

FEATURES TO AID IN FILLET FORMATION ON THE LEADS

DURING MOUNTING.


	1.171		\3
DIM	MIN.	N□M.	MAX.
Α	0.90	1.00	1.10
A1	0.00		0.05
b	0.33	0.41	0.51
C	0.23	0.28	0.33
D	5.00	5.15	5.30
D1	4.70	4.90	5.10
D2	3.80	4.00	4.20
Ε	6.00	6.15	6.30
E1	5.70	5.90	6.10
E2	3.45	3.65	3.85
e	1.27 BSC		
G	0.51	0.575	0.71
K	1.20	1.35	1.50
L	0.51	0.575	0.71
L1	0.150 REF		
М	3.00	3.40	3.80

TOP VIEW

DETAIL A

θ

0*

12*

GENERIC MARKING DIAGRAM*

= Assembly Location Α Υ = Year

W = Work Week ZZ = Lot Traceability

XXXXXX = Specific Device Code *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products

may not follow the Generic Marking.

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the $\square N$ Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

DOCUMENT NUMBER: 98AON26450

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION: DFNW5 5x6 (FULL-CUT SO8FL WF) **PAGE 1 OF 1**

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales